Skip to content

NomicEmbeddings

本笔记介绍了如何开始使用 Nomic 嵌入模型。

安装

python
# 安装包
!pip install -U langchain-nomic

环境设置

确保设置以下环境变量:

  • NOMIC_API_KEY

使用

python
from langchain_nomic.embeddings import NomicEmbeddings
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
python
embeddings.embed_query("My query to look up")
python
embeddings.embed_documents(
    ["This is a content of the document", "This is another document"]
)
python
# 异步嵌入查询
await embeddings.aembed_query("My query to look up")
python
# 异步嵌入文档
await embeddings.aembed_documents(
    ["This is a content of the document", "This is another document"]
)

自定义维度

Nomic 的 nomic-embed-text-v1.5 模型是通过Matryoshka learning 进行训练的,以实现单个模型的可变长度嵌入。这意味着您可以在推断时指定嵌入的维度。该模型支持从 64 到 768 的维度。

python
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5", dimensionality=256)
embeddings.embed_query("My query to look up")

基于 MIT 许可发布 共建 共享 共管